北京白癜风治疗的医院哪家好 https://jbk.39.net/yiyuanzaixian/bjzkbdfyy/sfxbdf/转型是大势所趋,但该如何展开?转型“水很深”,没有正确的认知和方法,第一步就会走错。
真正找到正确路径的企业凤毛麟角,通用的经验是什么?
“要去占领下一代的高地,那么就要先知道那件事的本质是什么,以终为始,去想象未来的企业到底是什么样子,重新审视数字化的进程。”
本周六的前沿课,第四范式联合创始人、首席架构师胡时伟带领学员梳理了AI助力企业决策并推进智能化转型的完整逻辑,帮我们跳出热闹风口之下的误区,厘清企业转型的本质和正确路径。
下面让我们一起走进这堂课,探讨当下最前沿的发展动态。
授课老师
胡时伟第四范式联合创始人、首席架构师
编辑
混沌商业研究团队
支持
混沌前沿课
转型之际迈向“下一代”企业1,科学发展的四个范式
人类科学的发展可以分成四个关键阶段:实验科学--理论科学--计算科学--数据科学,这也被称为“四个范式”,由年图灵奖获得者、美国资讯工程学家JimGray(詹姆斯·尼古拉·格雷)在《科学发展的四个范式》一文中提出。
第一范式,实验科学。我们日常当中运用最多的一种科学。人类通过重复实验记录自然,如钻木取火、摩擦起电等一些偶然或人为的实验,发现成功的案例,之后便采用同样的方式来指导下一步行动。
第二范式,理论科学。人类开始于现象经验中总结理论,抽象出本质规律,如牛顿三大定律。它的好处是泛化能力特别强,但是有些复杂现象的规律就无法抽象得出,比如天气预报,很难做一个简单的公式来描绘整个自然界的变化。
第三范式,计算科学。计算机出现,通过密集计算的方式,对未来进行推演,进行实践指导,如预测天气。
第四范式,数据科学。计算机从海量的数据中抽象出规律,从而指导我们的现实行动,该阶段跟之前有两点不同:首先,它的前提是要具备非常密集的数据。其次,计算机是用学习的方式,而不是通过专家的经验或者模拟计算的方式来形成最后的规律。
当一个产业进入了科学时代,发展速度急剧加快,质变随之发生。抓住了变化和规律,企业就会实现转型,进入到“下一个时代”。
2.有限理性VS极限理性:AI的本质是什么?
“人们在决定过程中寻找的并非是‘最大’或‘最优’的标准,而只是‘满意’的标准。”
——HerbertSimon,年图灵奖、年诺贝尔经济学奖得主。
我们经常说管理是一门艺术,因为“人”是一个复杂的变动因素,我们要去寻求一个大家都能满意,可以推行下去的决策,这是一个人为思考的过程。也是有限理性的过程。
AI和人脑究竟有什么样的区别?AI能够从海量的数据和海量的计算当中总结出海量的科学规律,其本质是一种极限理性,是把每一个细粒度的区间都用数据进行计算和分析的技术。相比之下,人脑很难在每一个精确的地方去形成判断,不是没有能力,而是没有精力。
3,AI的极限理性如何影响业务?
1)AI的高维技术,让决策的层级更下沉,趋向极限理性
机器学习模型当中有一个衡量标准叫维度,维度越高,意味着模型越准确,对事件/对象的刻画就越精准。常见的千人千面的内容/商品推荐,得益于高维技术可总结海量规则,为每个会员精准匹配独特服务。
举个例子,零售连锁集团做决策,用人和用AI会有何不同?
由人来做规则的制定者,通常是总部做决策,决定优惠的预算、预测不同区域的销量,这很容易产生一个矛盾:使得下面的门店失去能动性。门店受到思考范围的局限无法自主做出判断,而总部决策层又没有足够的时间和精力,参与到每一家门店的经营和优化。
这时,如果让AI从各级门店里面数据中找规律,可以辅助企业管理者做决策,根据每个门店的情况做最优决策。AI能够帮助实现决策的层级更下沉,使整体朝着极限理性的方向发展。
2)AI的实时技术,让决策依据和触达更及时
在整个管理体系中,信息的上传下达是要有周期的,如果每一个决策的点都有AI在辅助,可以做到毫秒级别,这是人做决策难以企及的,这个过程当中就存在巨大的收益。
我们处于一个瞬息万变的市场环境中,用户需求和社会发展日新月异,当一个个体进入一家门店或者打开一个APP,每一个瞬间都是不一样的,他做出的每件事情都在随他的心智发生变化。所以当我们用AI加上互联网的实时技术,让决策的依据和触达可以做到更及时。
3)AI的闭环技术,让决策进化永续不断
AI可能一开始决策的并不好,但因为它是一个闭环,能够做到永续不断地进化。曾击败围棋世界冠军的AlphaGo,一开始的能力也没有那么强,随着它后来生成棋谱以及做了越来越多的对弈练习之后,它的能力开始越来越强。
反观人类社会管理组织的进化速度,往往要以年来计。但是运用AI的闭环技术,我们可以自动发生迭代,以天级别、甚至分钟级别,持续不间断地进化。
机器决策的体系其实能够更好地发挥人的价值。人擅长感性的、判断的、非常复杂的决策,而机器擅长排程、协调、组织等类型的工作。因为它不知疲倦,并且非常中立,所以企业转型,是从以人为中心的体系走向人机协同的AI决策体系。
AI赋能什么是“下一代”企业?1,下一代企业的特点
上一代企业:用很少的人设计的产品、内容策略,服务一类人。
下一代企业:用机器生成的海量(亿-千亿)规则,服务所有人。
举个例子,一个网站如何做到服务好每个人?最好的方式是给每个人配一个编辑,谁能做到这一点?我们不可能有多少读者,就请多少编辑,于是用机器来帮忙,也就是用机器生成的海量规则服务到所有的人,这就是下一代企业。
今日头条早期的成功,很大程度上在于它重构了资讯分发的逻辑,让资讯和人的匹配方式发生了质变。它是怎么做到的?
当别人还在研究一个APP上可以分为多少频道,要用什么内容来吸引用户的时候,今日头条已经研发出一个强大的留存中台,用上千亿条规则形成了覆盖每一个人的“专属编辑”服务,让每个人都能看到自己想看的东西,千人千面,形成更好的用户体验。这就形成了今日头条在市场上的竞争优势,不仅仅是获得了一些降本增效的收益提升,更重要的是实现质的变化。
2,转型的本质:突破企业瓶颈点从量变到质变
成为下一代企业的根本原因是什么?是形成经营的质变。
1)在消费互联网领域,无论是内容分发,还是实际的商品分发,或者服务分发,利用AI解除了分发的瓶颈,让分发的边际成本降低,用户因为得到了专属服务,数量增加。当达到临界点,也就是分发的边际成本接近于0的时候,用户量急剧地上升,这就是企业进入到下一代的过程。
2)在产业互联网领域,人是非常关键的一大因素。数字化的平台可以为人赋能,我们利用AI的辅助,降低从业者的方差,实现服务网络的无限扩张,同样经历从量变到质变的过程。
数字化平台如何为人赋能?
“人”治的金字塔式系统:协作产生效率,而协作就需要“武林盟主”(管理者)起到调停作用,随着管理者金字塔结构变高,整个管理的效率就会降低,从业门槛也被抬高。
AI决策驱动的网状管理系统:分工协作由平台来优化,激励也由平台计算得出,比如通过APP、激励、积分等各种技术手段和平台工具,它可以让每一个从业者相对容易地到达一个比较高的水平。另一个方面,用系统做好利益分配,只要把自己的事情做到极致,就能获得自己的一份收益。这就是平台赋能的力量。
所以无论是消费互联网,还是产业互联网,它利用AI决策去转型,核心点是突破企业的瓶颈点,让每个人、每件事都被不同规则覆盖,极致地发挥机器智能,把“人治”的金字塔系统,变成机器驱动的网状管理系统,从而让企业不受人力的经验和成本所限制,从量变到质变。
转型思路AI如何支持企业经营中的三种决策?
AI支持企业经营中的三种决策:执行性决策、业务性决策、战略性决策。
1.执行性决策:单点场景的降本增效
这是每天一线从业人员在做的事情,根据实际的情况决定如何服务客户,比如应该给客户推荐什么类型的产品,面对客户的时候应该说什么话,这都是执行性的决策,对应到单点场景。
AI用于执行性决策,可以帮助关键场景做出更精准、更科学的决策,能做到场景的效率提升和成本降低。比如说我们用摄像头和健康码来帮助保安去决定是否放行,可以让识别率更好、更安全。
有一点需要注意:产品价格预测、金融反欺诈、个性化菜单推荐等各种各样场景的执行性决策,只能让我们对AI如何发挥作用形成一个基本的感受,并不能给企业本身带来什么真正的变化。所以企业数字化至少要做到业务性的决策,也就是业务再造的过程。
2.业务性决策:业务再造和创新
业务性决策针对的是整个价值链条,比如供应链,目的就是降本增效。沿着一系列的流程和一系列的点,通过AI决策在每个环节不停优化,让整个供应链的效率变得更高,提升企业核心指标,实现业务的再造与创新。
何谓业务的再造与创新?一些零售企业,用机器决策参与整个供应链过程之后,可以做到库存降低到原先的50%以下,意味着每年可能因此获得千万级的利润增长,在业务上获得的优势可以让企业做更多事。
业务再造,也是一个1+N的过程。
1是什么呢?1是业务中对KPI最重要的那个拆解子项。比如对于以采购为主的企业,最重要的事情是降低采购的成本,如果我们能对一宗采购的成本进行准确的预估,这在业务当中是非常重要的。
找出企业转型的1,使用AI,在这件事情上精益求精,达到极致的业务效果,这样的投入产出是合理的。
那么N是什么?它是业务链条上其他各种各样的环节(如非核心业务)。在这么多环节使用AI,肯定都能够产生很好的效果,但每一个都不具有关键作用。所以对于N的业务性改造,最重要的是要看你花同样的钱,能改造多少个业务,是要降低用AI去优化每一个部分的门槛,快速地完成整个端到端的变化。
数据和AI可以渗透到各个角落去驱动业务的创新,如果暂时找不到变革之道,但还是要先尝试的话,至少要着重